King Abdulaziz University Faculty of Sciences
Physics Department
First Exam - Phys 110

Second Term 1433-1434 H

Date: $\mathbf{7 / 5 / 1 4 3 4 ~ H}$

CHOOSE THE CORRECT ANSWER

1. The displacement of a boy moving with average velocity of $1.2 \mathrm{~m} / \mathrm{s}$ in 2 minutes is
a) 200 m
b) 150 m
c) 144 m
d) 100 m
2. $10^{3} \mathrm{~kg} / \mathrm{m}^{3}=$ \qquad
a) $1 \mathrm{~g} / \mathrm{cm}^{3}$
b) $10 \mathrm{~g} / \mathrm{cm}^{3}$
c) $10^{2} \mathrm{~g} / \mathrm{cm}^{3}$
d) $10^{3} \mathrm{~g} / \mathrm{cm}^{3}$
3. If 1 inch $=2.54 \mathrm{~cm}$, the conversion factor to convert 2 inch to cm is
a) $\frac{1 \mathrm{inch}}{2.54 \mathrm{~cm}}$
b) $\frac{2 \mathrm{inch}}{2.54 \mathrm{~cm}}$
c) $\frac{2.54 \mathrm{~cm}}{1 \text { inch }}$
d) $\frac{2.54 \mathrm{~cm}}{2 \text { inch }}$
4. 467 micrometer $=$
a) $4.67 \times 10^{-5} \mathrm{~m}$
b) $4.67 \times 10^{-3} \mathrm{~m}$
c) $4.67 \times 10^{-4} \mathrm{~m}$
d) $4.67 \times 10^{-2} \mathrm{~m}$
5. The rate of change of position with time is :
a) distance
b) velocity
c) acceleration
d) speed
6. \vec{A} and \vec{B} are two vectors as shown in the figure, which of the following is TRUE ?

a) $\vec{A} \times \vec{B}=0$
b) $\vec{A} \cdot \vec{B}=0$
c) $\vec{A} \times \vec{B}=1$
d) $\vec{A} \cdot \vec{B}=1$
7. Which of the following situations is NOT possible?
a) A body having constant velocity and changing acceleration.
b) A body having changing velocity and constant acceleration.
c) A body having positive velocity and positive acceleration.
d) A body having positive velocity and negative acceleration.
8. A boat قــارب moves (10 km west), then (5 km north), and finally (10 km east). The displacement of the boat from its initial position is
a) 5 km , South
b) 5 km , North
c) 10 km , East
d) 0 km
9. A vector \vec{a} has a magnitude of 1 unit and in a direction 10° with the positive x -axis, \vec{a} in unit vector notation is:
a) $0.98 \hat{i}+0.17 \hat{j}$
b) $0.29 \hat{i}+20 \hat{j}$
c) $0.53 \hat{i}+0.42 \hat{j}$
d) $0.23 \hat{i}+14 j$
10. Two vectors of the same magnitude (1 unit) are added; one is directed to the east and one is to the west. The magnitude of the resultant vector is
a) 1
b) 2
c) 3
d) 0
11. If the vectors $\vec{A}=\hat{i}+\hat{j}$ and $\vec{B}=-\hat{i}+\hat{j}$, then $\vec{A} \times \vec{B}$ is:
a) $2 \hat{k}$
b) $-2 \hat{i}-2 \hat{k}$
c) $2 \hat{i}+2 \hat{k}$
d) $-\hat{i}+\hat{j}-\hat{k}$
12. A car's speed is $30 \mathrm{~m} / \mathrm{s}$, after traveling 50 m with constant acceleration it reaches 15 m / s, its acceleration is
a) $-6.75 \mathrm{~m} / \mathrm{s}^{2}$
b) $-11.25 \mathrm{~m} / \mathrm{s}^{2}$
c) $6.75 \mathrm{~m} / \mathrm{s}^{2}$
d) $11.25 \mathrm{~m} / \mathrm{s}^{2}$
13. The speedometer عداد السـرعة in the car measures يقيــس :
a) velocity
b) speed
c) acceleration
d) displacement

Use the following to answer questions $14-15$:
The position of a body moving along the x -axis is given by: $x=3 t-4 t^{2}+t^{3}$
14. The average velocity for the time interval from $t=0 \mathrm{~s}$ to $\mathrm{t}=5 \mathrm{~s}$ is:
a) $v_{\text {avg. }}=40 \mathrm{~m} / \mathrm{s}$
b) $v_{\text {avg. }}=48 \mathrm{~m} / \mathrm{s}$
c) $v_{\text {avg. }}=20 \mathrm{~m} / \mathrm{s}$
d) $\mathcal{V}_{\text {avg }}=8 \mathrm{~m} / \mathrm{s}$
15. The position of the body at $t=4 \mathrm{~s}$ is:
a) $x=12 \mathrm{~m}$
b) $x=-3 m$
c) $x=3 m$
d) $x=-12 m$
16. A particle had a speed of $15 \mathrm{~m} / \mathrm{s}$ in the positive x direction and 2 s later its speed was $33 \mathrm{~m} / \mathrm{s}$ in the opposite direction. The average acceleration of the particle is:
a) $-20 \mathrm{~m} / \mathrm{s}^{2}$
b) $-24 \mathrm{~m} / \mathrm{s}^{2}$
c) $20 \mathrm{~m} / \mathrm{s}^{2}$
d) $24 \mathrm{~m} / \mathrm{s}^{2}$
17. As shown in the figure, if the magnitudes of \vec{a} and \vec{b} are 10 units and 25 units, respectively علــى التوالـــ , the x-component of the resultant of \vec{a} and \vec{b} is:

a) -20 units
b) -30 units
c) -2.5 units
d) -22.5 units
18. Raindrops قطرات المطر fall 1700 m from a cloud to the ground, the drops's velocity as they reached the ground is:
a) 0
b) $-183 \mathrm{~m} / \mathrm{s}$
c) $58 \mathrm{~m} / \mathrm{s}$
d) $-129 \mathrm{~m} / \mathrm{s}$
19. In the figure, the signs of the x and y components of the vector $\vec{D}_{1}-\vec{D}_{2}$ are:

a) $(+,+)$
b) $(-,-)$
c) $(+,-)$
d) $(-,+)$
20. The position of a particle is given by: $\mathbf{x}(\mathbf{t})=\mathbf{2 0} \mathbf{t} \mathbf{- 5} \mathbf{t}^{3}$ (where x is in meters and t in seconds). Is there ever a time when $a=0$?
a) $\mathrm{t}=0$
b) $t=30 \mathrm{~s}$
c) $\mathrm{t}=15 \mathrm{~s}$
d) $t=10 \mathrm{~s}$
21. The vector sum \vec{S} of the vectors in the diagram is equal to:

a) $\vec{S}=\vec{a}+\vec{b}+\vec{c}$
b) $\vec{S}=\vec{b}-\vec{a}-\vec{c}$
c) $\vec{S}=\vec{b}+\vec{a}-\vec{c}$
d) $\vec{S}=\vec{b}+\vec{a}$

Use the following to answer questions 22-23:
 angle between the directions of \vec{a} and \vec{b} is 60°.
22. The magnitude of the vector product of \vec{a} and \vec{b} is:
a) 40 units
b) 52 units
c) 20 units
d) 26 units
23. The scalar product of the two vectors \vec{a} and \vec{b} is:
a) 30 units
b) 60 units
c) 50 units
d) 20 units
24. A vector $2 \vec{B}$ has x, y, and z components as 2,4 , and 10 , respectively. The vector \vec{B} can be written as:
a) $2 \hat{i}+4 \hat{j}+10 \hat{k}$
b) $2 \hat{i}+2 \hat{j}+10 \hat{k}$
c) $\hat{i}+2 \hat{j}+5 \hat{k}$
d) $2 \hat{j}+5 \hat{k}$
25. The x component of vector \vec{a} is $a_{x}=2.6 \mathrm{~m}$, if the angle between \vec{a} and the positive x -axis is -41^{0}, then the magnitude of \vec{a} is:
a) 3 m
b) 2 m
c) 4.58 m
d) 3.45 m
26. How long will it take an apple falling from a 29.4 m tall tree to hit the ground ?
a) 3.72 s
b) 1.56 s
c) 2.04 s
d) 2.45 s
27. (0.0000000782) is equal to :
a) 7.82×10^{-6}
b) 7.82×10^{-8}
c) 7.82×10^{-9}
d) 7.82×10^{-7}

Use the following to answer questions 28-30:
If $\vec{a}=4 \hat{i}-3 \hat{j}$ and $\vec{b}=6 \hat{i}+8 \hat{j}$
28. The direction of \vec{b}
a) 43^{0}
b) 60°
c) 53^{0}
d) 58^{0}
29. The magnitude of \vec{a}
a) 4
b) 5
c) 6
d) 7
30. $\vec{b}-\vec{a}=$
a) $\hat{i}+3 \hat{j}$
b) $-2 \hat{i}-5 \hat{j}$
c) $4 \hat{i}-3 \hat{j}$
d) $2 \hat{i}+11 \hat{j}$
31. A particle moves along the x-axis according to the equation $x=\mathbf{4 - 4 6 t}-\mathbf{4 t}{ }^{\mathbf{3}}$ (where x is in meters and t in seconds), therefore, at $\mathrm{t}=0 \mathrm{~s}$:
a) The speed is zero
b) The speed is $46 \mathrm{~m} / \mathrm{s}$ in the positive direction of x .
c) The speed is $50 \mathrm{~m} / \mathrm{s}$ in the positive direction of x .
d) The speed is $46 \mathrm{~m} / \mathrm{s}$ in the negative direction of x .
32. The SI units of base quantities (Length, Mass, Time) are
a) Km, Kg, s
b) $\mathrm{cm}, \mathrm{g}, \mathrm{s}$
c) $\mathrm{cm}, \mathrm{Kg}, \mathrm{s}$
d) $\mathrm{m}, \mathrm{Kg}, \mathrm{s}$
33. $(1 \mathrm{~nm})^{2}=$
a) $10^{-18} \mathrm{~m}^{2}$
b) $10^{+9} \mathrm{~m}^{2}$
c) $10^{-9} \mathrm{~m}^{2}$
d) $10^{+18} \mathrm{~m}^{2}$

Answer Key

1. c
2. a
3. c
4. c
5. b
6. a
7. a
8. b
9. a
10. d
11. a
12. a
13. b
14. d
15. a
16. b
17. a
18. b
19. c
20. a
21. c
22. b
23. a
24. c
25. d
26. d
27. b
28. c
29. b
30. d
31. d
32. d
33. a
